

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

A-level CHEMISTRY

Paper 3

Friday 23 June 2023

Morning

Time allowed: 2 hours

Question

1

3

4

5

6

Section B

TOTAL

For Examiner's Use

Mark

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend 70 minutes on Section A and 50 minutes on Section B.

box

box

0 1.4	State why sodium carbonate is added to the distillate in step 4.		Do not write outside the box
	Explain why there is a build-up of pressure in the separating funnel.	[2 marks]	
0 1.5	Give a reason why two layers form in the separating funnel.		
	Suggest why ethyl ethanoate forms the upper layer.	[2 marks]	
	Reason		
	Suggestion		
01.6	State why anhydrous calcium chloride is added in step 6.	[1 mark]	

]	Do not write
0 1.7	A student uses the method to prepare some ethyl ethanoate.		outside the box
	\sim_{OH} + \sim_{OH} \rightleftharpoons \sim_{O} +	H ₂ O	
	The student adds 10.0 cm ³ of ethanol ($M_r = 46.0$) to 5.25 g of ethanoic acid ($M_r = 60.0$) and obtains 5.47 g of ethyl ethanoate ($M_r = 88.0$).		
	For ethanol, density = 0.790 g cm^{-3}		
	Determine the limiting reagent.		
	Calculate the percentage yield of ethyl ethanoate.	[5 marks]	
	Limiting reagent		
	Percentage yield		
0 1.8	Suggest a reason why the percentage yield is not 100%.	[4 mork]	
		[1 mark]	
			17
		Turn over ▶	•
		IB/M/.lun23/7405/	3
		-D/10/00120/1400/	0

5

		Do not write outside the
0 2	This question is about isomerism and the dehydration of alcohols.	box
	Pentan-2-ol has the molecular formula $C_5H_{12}O$	
02.1	Draw the displayed formula of an unbranched position isomer of pentan-2-ol that can	
	[1 mark]	
02.2	Draw the skeletal formula of a chain isomer of pentan-2-ol that can be dehydrated to form a mixture of alkenes	
	[1 mark]	
02.3	Draw the structure of an unbranched functional group isomer of pentan-2-ol. [1 mark]	
02.4	Another isomer of pentan-2-ol is an alcohol that is not dehydrated when heated with	
	concentrated sulfuric acid.	
	Draw the structure of this isomer. [1 mark]	

7

box

Turn over ►

box

Do not write outside the

box

0 4

A student is given two aqueous solutions, L and M, that both contain iron salts.

The student does a series of tests on the solutions.

 Table 1 shows these tests and the observations.

Table 1

Test	Observations with L	Observations with M
Add ammonia solution	A red-brown precipitate	A green precipitate forms
slowly until in excess.	excess.	that is insoluble in excess.
Add sodium carbonate	A red-brown precipitate	A green precipitate forms.
solution.	forms. Effervescence is seen	
Add dilute nitric acid and then divide into two portions.	No change is seen.	No change is seen.
Add barium chloride solution to the first portion.	No change is seen.	A white precipitate forms.
Add silver nitrate solution to the second portion.	A white precipitate forms.	No change is seen.

Identify L and M using the results in Table 1.

In your answer:

- identify all precipitates
- explain why effervescence is seen in the reaction of sodium carbonate with L but not with M
- give ionic equations for all reactions.

[6 marks]

Do not write outside the box

	_
	D
	0
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	L

Turn over ►

6

0 5 The molar enthalpy of vaporisation (ΔH_{vap}) of a liquid is the enthalpy change when one mole of liquid is converted to vapour at the boiling point of the liquid. A student does an experiment to determine ΔH_{vap} for water. The student: places a large beaker on a balance pours 500 cm³ of water into the beaker uses a 2.4 kW heater to raise the temperature of the water to 100 °C records the mass of the beaker and hot water • uses the 2.4 kW heater to boil the water for 100 s • records the mass of the beaker and remaining water. The loss in mass is 103 g **0 5 . 1** Calculate ΔH_{vap} for water. $[1 \text{ kW} = 1 \text{ kJs}^{-1}]$ [3 marks] kJ mol⁻¹ ΔH_{vap}

	Tab	ble 2	
Compound	CH ₃ CH ₂ OH	CH ₃ CH ₂ NH ₂	CH ₃ OCH ₃
Boiling point / K	352	290	248
 All three compounds in Table 2 are polar. Ethanol is the most polar and ethylamine is the least polar. Explain why all three molecules are polar and why ethylamine is the least polar. In your answer refer to the shapes around, and relative electronegativities of, the most electronegative atoms. 			
. 3 Explain the trend in the Refer to the intermole	he boiling points of the ecular forces in all thre	e three compounds. ee compounds in your	answer. [3 marks]
. 3 Explain the trend in the Refer to the intermole	he boiling points of the ecular forces in all thre	e three compounds.	answer. [3 marks]
. 3 Explain the trend in the Refer to the intermole	he boiling points of the ecular forces in all thre	e three compounds.	answer. [3 marks]

Turn over ►

			Do not write outside the
06	Calcium hydroxide is almost insoluble in water, but it reacts with dilute hydrochloric acid.		box
	$Ca(OH)_2(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + 2H_2O(I)$		
	A student adds 100 cm ³ of 0.100 mol dm ⁻³ hydrochloric acid to 0.600 g of solid calcium hydroxide.		
06.1	Show, by calculation, that the calcium hydroxide is in excess.	[2 marks]	
06.2	The final mixture contains a saturated solution of $Ca(OH)_2$ at 293 K		
	At 293 K		
	 the solubility of Ca(OH)₂ in this solution is 0.400 g dm⁻³ <i>K</i>_w = 6.80 × 10⁻¹⁵ mol² dm⁻⁶ 		
	Calculate the pH of this solution.		
	Give your answer to two decimal places.	[5 marks]	
	рН		7

		Se	ction B			Do not write outside the box
	Answer all questions in this section.					
Only one For each a correct me If you wan If you wish as shown. You may o Do not us	answer per questi answer completely THOD • It to change your a to return to an ar • • • • • • • • • • • • • • • • • • •	on is allowed. y fill in the circle alor wRONG METHODS answer you must cro nswer previously cro the blank space are s for this working.	ngside the approp	oriate answer. nal answer as sh e answer you no ion but this will n	nown.	
0 7	vvnich row snov	vs the number of ea	ach fundamental	particle in one ²⁰ 1	[1 mark]	
		protons	neutrons	electrons		
	Α	12	12	10	0	
	В	14	11	12	0	
	С	12	13	10	0	
	D	12	13	12	0	
08	What is the rela	tive molecular mass	s (<i>M</i> ,) of benzene	e-1,4-dicarboxylic	c acid? [1 mark]	
	A 164.0	0				
	B 166.0	0				
	C 168.0	0				
	D 170.0	0				

Turn over ►

09	Which substance has significant electron delocalisation?	Do not write outside the box
	[1 ma	ırk]
	A graphite	
	B iodine	
	C sodium chloride	
	D tetrachloromethane	
10	Which reaction has a standard enthalpy change equal to the standard enthalpy of formation for barium chloride? [1 ma	ırk]
	A Ba(g) + $Cl_2(g) \rightarrow BaCl_2(s)$	
	B $Ba^{2+}(g) + 2Cl^{-}(g) \rightarrow BaCl_{2}(s)$	
	C Ba(s) + $Cl_2(g) \rightarrow BaCl_2(s)$	
	D $Ba^{2+}(s) + 2Cl^{-}(g) \rightarrow BaCl_{2}(s)$	
]

			Do not write outside the
1 3	When HF is added to water at 298 K, this equilibrium is established.		box
	$HF(aq) \rightleftharpoons H^+(aq) + F^-(aq)$		
	At equilibrium, [HF] = 7.70 × 10 ⁻³ mol dm ⁻³ and [F ⁻] = 2.30 × 10 ⁻³ mol dm ⁻³		
	What is the value of the equilibrium constant, in mol dm ⁻³ , at 298 K?	[1 mark]	
	A 1.45 × 10 ³ ○		
	B 3.35		
	C 2.99 × 10 ^{−1}		
	D 6.87 × 10 ^{−4} ⊡		
14	In which oxide is the named element in its highest oxidation state?	[1 mark]	
	A chlorine in CIO ₂		
	B magnesium in MgO		
	C nitrogen in N_2O_4		
	D sulfur in SO ₂ \bigcirc		
1 5	What happens when water is vaporised?	[1 mark]	
	A Covalent bonds break within molecules.		
	B Intermolecular forces are overcome.		
	C The enthalpy of the molecules decreases.		
	D The disorder of the molecules decreases.		

1 6	Which species can behave as a Brønsted–Lowry acid in aqueous solution? [1 mark]	Do not write outside the box
	A SO_4^{2-} \bigcirc B HCO_3^{-} \bigcirc C BF_3 \bigcirc D NH_2 \bigcirc	
1 7	Which change causes the pH of 10 cm ³ of 1.0 mol dm ⁻³ NaOH to be halved at 298 K? $K_w = 1.0 \times 10^{-14}$ at 298 K [1 mark]	
	A adding 10 am ³ of water	
	B adding 10 dm ³ of water \Box	
	C adding 5 cm ³ of 1.0 mol dm ⁻³ HCl	
	D adding 10 cm ³ of 1.0 mol dm ⁻³ HCl \bigcirc	
1 8	A 0.100 mol dm ^{-3} solution of a weak acid has pH = 2.50	
	What is the value of K_a for this acid, in mol dm ⁻³ ? [1 mark]	
	A 3.16 × 10 ^{−2}	
	B 3.16 × 10 ^{−3}	
	C 1.00×10^{-4}	
	D 1.00×10^{-5}	

Turn over ►

22 Do not write outside the box 19 Which statement is not correct about the Period 3 elements sodium to chlorine? [1 mark] \bigcirc A Sodium has the largest atomic radius. \bigcirc **B** Sodium has the lowest melting point. **C** Silicon has the highest melting point. \bigcirc **D** Chlorine has the highest first ionisation energy. \bigcirc 2 0 Equal volumes of pairs of solutions are mixed. Which pair forms a buffer solution? [1 mark] A ammonia and ammonium chloride \bigcirc B ammonia and methylamine \bigcirc C ethanoic acid and methanoic acid \bigcirc **D** hydrochloric acid and sodium hydroxide \bigcirc 2 1 Barium metal is added to a large excess of water. Which observation is correct and complete? [1 mark] A a colourless solution \bigcirc **B** a colourless solution with effervescence $^{\circ}$ \bigcirc **C** a dense white precipitate \bigcirc **D** a dense white precipitate with effervescence

2 2	Which species is the strongest reducing agent?	Do not write outside the box
	[1 mark]	
	A F ₂	
	B I ₂ \bigcirc	
	C F [_] □	
	DI- O	
2 3	Which statement about the shapes of ions is not correct? [1 mark]	
	A [CoCl ₄] ²⁻ is square planar.	
	B NH ₄ ⁺ is tetrahedral.	
	C $[Co(H_2NCH_2CH_2NH_2)_3]^{2+}$ is octahedral.	
	D $[Co(H_2O)_6]^{2+}$ is octahedral.	
2 4	Which compound can decolourise acidified potassium manganate(VII) solution? [1 mark]	
	A AgNO ₃	
	B CuSO ₄	
	C FeSO ₄	
	D Fe ₂ (SO ₄) ₃	
	Turn over for the next question	

Turn over ►

25

Turn over ►

3 1	Compound X can be converted into an alcohol in a two-stage process.		Do not write outside the box
	Concentrated H_2SO_4 Intermediate H_2O Alcohol		
	What is the name of compound X ?	[1 mark]	
	A propene		
	B propanal		
	C methylbenzene		
	D ethanamide		
32	Which is a correct equation for the oxidation of 1-phenylethanol? [O] represents oxygen from an oxidising agent.	[1 mark]	
	$A C_6H_5CH_2CH_2OH + 2[O] \rightarrow C_6H_5CH_2COOH + H_2O$		
	$\textbf{B} \ C_6H_5CH_2CH_2OH \ \textbf{+} \ [O] \ \rightarrow \ C_6H_5CH_2CHO \ \textbf{+} \ H_2O \ \end{tabular}$		
	$\textbf{C} \ C_6H_5CH(OH)CH_3 \ \textbf{+} \ [O] \ \rightarrow \ C_6H_5CH_2CHO \ \textbf{+} \ H_2O \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
	$\textbf{D} \ C_6H_5CH(OH)CH_3 \ \textbf{+} \ [O] \ \rightarrow \ C_6H_5COCH_3 \ \textbf{+} \ H_2O$		
	Turn over for the next question		

Turn over ►

28

33	The skeletal formulas of two compounds are shown	Do not write outside the box
	Which method would distinguish between samples of these compounds? [1 mark]	
	A comparing fingerprint regions of their infrared spectra	
	B obtaining molecular masses from their high resolution mass spectra	
	C warming with acidified potassium dichromate(VI) solution	
	D warming with Tollens' reagent	
3 4	Which compound is the strongest base? [1 mark]	
	ANH2 □	
	C NH ₃	
	D NH ₄ CI	
3 5	Which statement about enzymes is not correct? [1 mark]	
	A The tertiary structure of an enzyme influences which molecules	
	B The action of enzymes can be inhibited by a molecule or ion that binds to the active site.	
	C Enzymes work equally well on both optical isomers of a substrate.	
	D Computers can be used to design drugs to block active sites on	

3 6	Cisplatin has the formula [Pt(NH ₃) ₂ Cl ₂] Cisplatin is an anti-cancer drug that prevents replication When cisplatin bonds to DNA, which is the correct ligand	of DNA. d replacement reaction? [1 mark]	Do not write outside the box
	A replacement of one NH ₃ ligand	0	
	${f B}$ replacement of two NH ₃ ligands	0	
	${\boldsymbol C}$ replacement of one NH_3 ligand and one CI^- ligand	0	
	D replacement of two CI ⁻ ligands	0	30

END OF QUESTIONS

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

